3.340 \(\int \frac{a+a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=74 \[ \frac{\sqrt{2} a \tanh ^{-1}\left (\frac{\sqrt{d} \tan (e+f x)+\sqrt{d}}{\sqrt{2} \sqrt{d \tan (e+f x)}}\right )}{d^{3/2} f}-\frac{2 a}{d f \sqrt{d \tan (e+f x)}} \]

[Out]

(Sqrt[2]*a*ArcTanh[(Sqrt[d] + Sqrt[d]*Tan[e + f*x])/(Sqrt[2]*Sqrt[d*Tan[e + f*x]])])/(d^(3/2)*f) - (2*a)/(d*f*
Sqrt[d*Tan[e + f*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0792321, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3529, 3532, 208} \[ \frac{\sqrt{2} a \tanh ^{-1}\left (\frac{\sqrt{d} \tan (e+f x)+\sqrt{d}}{\sqrt{2} \sqrt{d \tan (e+f x)}}\right )}{d^{3/2} f}-\frac{2 a}{d f \sqrt{d \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Tan[e + f*x])/(d*Tan[e + f*x])^(3/2),x]

[Out]

(Sqrt[2]*a*ArcTanh[(Sqrt[d] + Sqrt[d]*Tan[e + f*x])/(Sqrt[2]*Sqrt[d*Tan[e + f*x]])])/(d^(3/2)*f) - (2*a)/(d*f*
Sqrt[d*Tan[e + f*x]])

Rule 3529

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((
b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1))/(f*(m + 1)*(a^2 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
 - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]

Rule 3532

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-2*d^2)/f,
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x
] && EqQ[c^2 - d^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{a+a \tan (e+f x)}{(d \tan (e+f x))^{3/2}} \, dx &=-\frac{2 a}{d f \sqrt{d \tan (e+f x)}}+\frac{\int \frac{a d-a d \tan (e+f x)}{\sqrt{d \tan (e+f x)}} \, dx}{d^2}\\ &=-\frac{2 a}{d f \sqrt{d \tan (e+f x)}}-\frac{\left (2 a^2\right ) \operatorname{Subst}\left (\int \frac{1}{-2 a^2 d^2+d x^2} \, dx,x,\frac{a d+a d \tan (e+f x)}{\sqrt{d \tan (e+f x)}}\right )}{f}\\ &=\frac{\sqrt{2} a \tanh ^{-1}\left (\frac{\sqrt{d}+\sqrt{d} \tan (e+f x)}{\sqrt{2} \sqrt{d \tan (e+f x)}}\right )}{d^{3/2} f}-\frac{2 a}{d f \sqrt{d \tan (e+f x)}}\\ \end{align*}

Mathematica [C]  time = 0.124292, size = 64, normalized size = 0.86 \[ -\frac{(1+i) a \left (\, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};-i \tan (e+f x)\right )-i \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};i \tan (e+f x)\right )\right )}{d f \sqrt{d \tan (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Tan[e + f*x])/(d*Tan[e + f*x])^(3/2),x]

[Out]

((-1 - I)*a*(Hypergeometric2F1[-1/2, 1, 1/2, (-I)*Tan[e + f*x]] - I*Hypergeometric2F1[-1/2, 1, 1/2, I*Tan[e +
f*x]]))/(d*f*Sqrt[d*Tan[e + f*x]])

________________________________________________________________________________________

Maple [B]  time = 0.02, size = 355, normalized size = 4.8 \begin{align*} -2\,{\frac{a}{df\sqrt{d\tan \left ( fx+e \right ) }}}+{\frac{a\sqrt{2}}{4\,f{d}^{2}}\sqrt [4]{{d}^{2}}\ln \left ({ \left ( d\tan \left ( fx+e \right ) +\sqrt [4]{{d}^{2}}\sqrt{d\tan \left ( fx+e \right ) }\sqrt{2}+\sqrt{{d}^{2}} \right ) \left ( d\tan \left ( fx+e \right ) -\sqrt [4]{{d}^{2}}\sqrt{d\tan \left ( fx+e \right ) }\sqrt{2}+\sqrt{{d}^{2}} \right ) ^{-1}} \right ) }+{\frac{a\sqrt{2}}{2\,f{d}^{2}}\sqrt [4]{{d}^{2}}\arctan \left ({\sqrt{2}\sqrt{d\tan \left ( fx+e \right ) }{\frac{1}{\sqrt [4]{{d}^{2}}}}}+1 \right ) }-{\frac{a\sqrt{2}}{2\,f{d}^{2}}\sqrt [4]{{d}^{2}}\arctan \left ( -{\sqrt{2}\sqrt{d\tan \left ( fx+e \right ) }{\frac{1}{\sqrt [4]{{d}^{2}}}}}+1 \right ) }-{\frac{a\sqrt{2}}{4\,df}\ln \left ({ \left ( d\tan \left ( fx+e \right ) -\sqrt [4]{{d}^{2}}\sqrt{d\tan \left ( fx+e \right ) }\sqrt{2}+\sqrt{{d}^{2}} \right ) \left ( d\tan \left ( fx+e \right ) +\sqrt [4]{{d}^{2}}\sqrt{d\tan \left ( fx+e \right ) }\sqrt{2}+\sqrt{{d}^{2}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{d}^{2}}}}}-{\frac{a\sqrt{2}}{2\,df}\arctan \left ({\sqrt{2}\sqrt{d\tan \left ( fx+e \right ) }{\frac{1}{\sqrt [4]{{d}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{d}^{2}}}}}+{\frac{a\sqrt{2}}{2\,df}\arctan \left ( -{\sqrt{2}\sqrt{d\tan \left ( fx+e \right ) }{\frac{1}{\sqrt [4]{{d}^{2}}}}}+1 \right ){\frac{1}{\sqrt [4]{{d}^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x)

[Out]

-2*a/d/f/(d*tan(f*x+e))^(1/2)+1/4/f*a/d^2*(d^2)^(1/4)*2^(1/2)*ln((d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2
)*2^(1/2)+(d^2)^(1/2))/(d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))+1/2/f*a/d^2*(d^2)^
(1/4)*2^(1/2)*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-1/2/f*a/d^2*(d^2)^(1/4)*2^(1/2)*arctan(-2^(1/
2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)-1/4/f*a/d/(d^2)^(1/4)*2^(1/2)*ln((d*tan(f*x+e)-(d^2)^(1/4)*(d*tan(f*x+e
))^(1/2)*2^(1/2)+(d^2)^(1/2))/(d*tan(f*x+e)+(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)*2^(1/2)+(d^2)^(1/2)))-1/2/f*a/d/(
d^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)+1/2/f*a/d/(d^2)^(1/4)*2^(1/2)*arctan(-2^
(1/2)/(d^2)^(1/4)*(d*tan(f*x+e))^(1/2)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.59965, size = 521, normalized size = 7.04 \begin{align*} \left [\frac{\sqrt{2} a \sqrt{d} \log \left (\frac{\tan \left (f x + e\right )^{2} + \frac{2 \, \sqrt{2} \sqrt{d \tan \left (f x + e\right )}{\left (\tan \left (f x + e\right ) + 1\right )}}{\sqrt{d}} + 4 \, \tan \left (f x + e\right ) + 1}{\tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right ) - 4 \, \sqrt{d \tan \left (f x + e\right )} a}{2 \, d^{2} f \tan \left (f x + e\right )}, -\frac{\sqrt{2} a d \sqrt{-\frac{1}{d}} \arctan \left (\frac{\sqrt{2} \sqrt{d \tan \left (f x + e\right )} \sqrt{-\frac{1}{d}}{\left (\tan \left (f x + e\right ) + 1\right )}}{2 \, \tan \left (f x + e\right )}\right ) \tan \left (f x + e\right ) + 2 \, \sqrt{d \tan \left (f x + e\right )} a}{d^{2} f \tan \left (f x + e\right )}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[1/2*(sqrt(2)*a*sqrt(d)*log((tan(f*x + e)^2 + 2*sqrt(2)*sqrt(d*tan(f*x + e))*(tan(f*x + e) + 1)/sqrt(d) + 4*ta
n(f*x + e) + 1)/(tan(f*x + e)^2 + 1))*tan(f*x + e) - 4*sqrt(d*tan(f*x + e))*a)/(d^2*f*tan(f*x + e)), -(sqrt(2)
*a*d*sqrt(-1/d)*arctan(1/2*sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(-1/d)*(tan(f*x + e) + 1)/tan(f*x + e))*tan(f*x +
e) + 2*sqrt(d*tan(f*x + e))*a)/(d^2*f*tan(f*x + e))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int \frac{1}{\left (d \tan{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx + \int \frac{\tan{\left (e + f x \right )}}{\left (d \tan{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))**(3/2),x)

[Out]

a*(Integral((d*tan(e + f*x))**(-3/2), x) + Integral(tan(e + f*x)/(d*tan(e + f*x))**(3/2), x))

________________________________________________________________________________________

Giac [B]  time = 1.28527, size = 342, normalized size = 4.62 \begin{align*} -\frac{\frac{8 \, a}{\sqrt{d \tan \left (f x + e\right )} f} - \frac{2 \, \sqrt{2}{\left (a d \sqrt{{\left | d \right |}} - a{\left | d \right |}^{\frac{3}{2}}\right )} \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \sqrt{{\left | d \right |}} + 2 \, \sqrt{d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt{{\left | d \right |}}}\right )}{d^{2} f} - \frac{2 \, \sqrt{2}{\left (a d \sqrt{{\left | d \right |}} - a{\left | d \right |}^{\frac{3}{2}}\right )} \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \sqrt{{\left | d \right |}} - 2 \, \sqrt{d \tan \left (f x + e\right )}\right )}}{2 \, \sqrt{{\left | d \right |}}}\right )}{d^{2} f} - \frac{\sqrt{2}{\left (a d \sqrt{{\left | d \right |}} + a{\left | d \right |}^{\frac{3}{2}}\right )} \log \left (d \tan \left (f x + e\right ) + \sqrt{2} \sqrt{d \tan \left (f x + e\right )} \sqrt{{\left | d \right |}} +{\left | d \right |}\right )}{d^{2} f} + \frac{\sqrt{2}{\left (a d \sqrt{{\left | d \right |}} + a{\left | d \right |}^{\frac{3}{2}}\right )} \log \left (d \tan \left (f x + e\right ) - \sqrt{2} \sqrt{d \tan \left (f x + e\right )} \sqrt{{\left | d \right |}} +{\left | d \right |}\right )}{d^{2} f}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*tan(f*x+e))/(d*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

-1/4*(8*a/(sqrt(d*tan(f*x + e))*f) - 2*sqrt(2)*(a*d*sqrt(abs(d)) - a*abs(d)^(3/2))*arctan(1/2*sqrt(2)*(sqrt(2)
*sqrt(abs(d)) + 2*sqrt(d*tan(f*x + e)))/sqrt(abs(d)))/(d^2*f) - 2*sqrt(2)*(a*d*sqrt(abs(d)) - a*abs(d)^(3/2))*
arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(abs(d)) - 2*sqrt(d*tan(f*x + e)))/sqrt(abs(d)))/(d^2*f) - sqrt(2)*(a*d*sqrt(
abs(d)) + a*abs(d)^(3/2))*log(d*tan(f*x + e) + sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(abs(d)) + abs(d))/(d^2*f) + s
qrt(2)*(a*d*sqrt(abs(d)) + a*abs(d)^(3/2))*log(d*tan(f*x + e) - sqrt(2)*sqrt(d*tan(f*x + e))*sqrt(abs(d)) + ab
s(d))/(d^2*f))/d